SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.

SOLID Principles In Practice With Python And UML Examples in 2025

2025/08/28 14:22

\ Let’s be real: most developers nod politely when SOLID comes up, then continue writing 500-line classes that smell worse than week-old fried eggs.

Here’s the thing: SOLID isn’t about pleasing your CS professor. It’s about writing code that your future self won’t want to rage-quit from after a single bugfix. Bad code means frustration, late nights, and way too much coffee.

SOLID is a language that senior devs use to communicate across years of maintenance. When you see it in a project, you don’t need to crawl line by line like some code archaeologist digging through ruins. Instead, you can predict the system’s behavior, understand responsibilities, and trust that classes aren’t hiding surprises like a clown in a sewer drain. Follow it, and you can read code like a map. Ignore it, and you're wandering blind through spaghetti caves.

What is SOLID (for the two people who missed the party)?

SOLID is an acronym for five object-oriented design principles coined by Uncle Bob Martin back when 2000s were still a thing:

  • S — Single Responsibility Principle (SRP)
  • O — Open–Closed Principle (OCP)
  • L — Liskov Substitution Principle (LSP)
  • I — Interface Segregation Principle (ISP)
  • D — Dependency Inversion Principle (DIP)

Each principle is simple in words, but game-changing in practice. Let’s walk through them with Python and UML examples, and see why your future code reviewers will thank you.

\


🪓 Single Responsibility Principle (SRP)

One job, one class. Don’t be that developer who mixes logging, DB writes, and business logic in one method.

Why it matters

If a class does too many things, every change risks breaking unrelated behavior. It’s like wiring your home’s electricity, plumbing, and gas through the same pipe - one adjustment and the whole house either floods, burns, or explodes.

Bad Example

Here’s a FileManager class that thinks it’s Batman: reads files, writes them, compresses them, and even appends greetings:

UML

from pathlib import Path from zipfile import ZipFile   class FileManager:     def __init__(self, file_path: str):         self.path = Path(file_path)      def read(self) -> str:         return self.path.read_text('utf-8')      def write(self, content: str):         self.path.write_text(content, 'utf-8')      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)      def add_greeting(self, content: str) -> str:         return content + '\nHello world!'   if __name__ == '__main__':     file_path = 'data.txt'     file_manager = FileManager(file_path)     content = file_manager.add_greeting(file_manager.read())     file_manager.write(content)     file_manager.compress() 

Call diagram

What’s wrong?

Although the usage looks easy, every time you need to tweak compression, you risk breaking file writing. Change greetings? Oops, now compression fails.

Good Example

Split responsibilities. Each class does one job, cleanly.

UML

from pathlib import Path from zipfile import ZipFile  DEFAULT_ENCODING = 'utf-8'   class FileReader:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def read(self) -> str:         return self.path.read_text(self.encoding)   class FileWriter:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def write(self, content: str):         self.path.write_text(content, self.encoding)   class FileCompressor:     def __init__(self, file_path: Path):         self.path = file_path      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)   def add_greeting(self, content: str) -> str:     return content + '\nHello world!'   if __name__ == '__main__':     file_path = Path('data.txt')     content = FileReader(file_path).read()     FileWriter(file_path).write(add_greeting(content))     FileCompressor(file_path).compress() 

Call diagram

Although the call diagram looks a little trickier, now you can modify compression without touching greetings. Future you approves.

\


🧩 Open–Closed Principle (OCP)

Code should be open for extension, closed for modification. Like Netflix - adding new shows without rewriting the entire app.

Why it matters

If every new feature forces you to edit the same class, your code becomes a fragile Jenga tower. Add one more method, and boom - production outage.

Bad Example

The classic “God class of geometry”:

UML

from math import pi   class Shape3D:     def __init__(self, shape_type: str, **kwargs):         self.shape_type = shape_type         self.kwargs = kwargs      def calculate_parallelepiped_volume(self):         return self.kwargs['w'] * self.kwargs['h'] * self.kwargs['l']      def calculate_sphere_volume(self):         return 3 / 4 * pi * self.kwargs['r'] ** 3      def calculate_cone_volume(self):         return 1 / 3 * pi * self.kwargs['r'] ** 2 * self.kwargs['h']      def volume(self) -> float:         if self.shape_type == 'parallelepiped':             return self.calculate_parallelepiped_volume()         if self.shape_type == 'sphere':             return self.calculate_sphere_volume()         if self.shape_type == 'cone':             return self.calculate_cone_volume()         # Add more ifs forever         raise ValueError   if __name__ == '__main__':     print(Shape3D('parallelepiped', w=1.0, h=2.0, l=3.0).volume())     print(Shape3D('sphere', r=3.5).volume())     print(Shape3D('cone', r=3.5, h=2.0).volume()) 

Every time you add a new shape, you hack this class. Here, we are not extending; we are modifying. This violates OCP.

Good Example

Make a common base class, extend it with new shapes.

UML

from abc import ABC, abstractmethod from math import pi   class Shape3D(ABC):     @abstractmethod     def volume(self) -> float:         raise NotImplementedError   class Parallelepiped(Shape3D):     def __init__(self, w: float, h: float, l: float):         self.w, self.h, self.l = w, h, l      def volume(self):         return self.w * self.h * self.l   class Sphere(Shape3D):     def __init__(self, r: float):         self.r = r      def volume(self):         return 3 / 4 * pi * self.r ** 3   class Cone(Shape3D):     def __init__(self, r: float, h: float):         self.r, self.h = r, h      def volume(self):         return 1 / 3 * pi * self.r ** 2 * self.h   if __name__ == '__main__':     print(Parallelepiped(w=1.0, h=2.0, l=3.0).volume())     print(Sphere(r=3.5).volume())     print(Cone(r=3.5, h=2.0).volume()) 

Want a Torus? Just new subclass. No if-hell required, no edits of old code. Clean. Extensible. Chef’s kiss.

\

🤔 Another Discussable Example of OCP Violation

Here’s a class that offers multiple hard-coded greeting methods:

UML

class GreetingContainer:     def __init__(self, name: str):         self.name = name      def hi_greet(self):         print("Hi, " + self.name)      def hey_greet(self):         print("Hey, " + self.name)      def hello_greet(self):         print("Hello, " + self.name) 

At first glance this looks fine: we’re not deleting or altering existing methods, we’re just adding new ones. Technically, we’re extending the class. But here’s the catch: clients using this class must know exactly which method to call, and the interface keeps bloating. This design is brittle - new greetings mean more methods and more places in the code that have to be aware of them. You can argue it’s not a direct OCP violation, but it drifts into LSP territory: instances of GreetingContainer can’t be treated uniformly, since behavior depends on which method you pick (we will discuss it a little later).

\


🦆 Liskov Substitution Principle (LSP)

If code expects an object of some type, any subclass should be usable without nasty surprises. A subclass that breaks this promise isn’t an extension - it’s a landmine disguised as a feature.

Why it matters

Subclasses must be replaceable with their children without breaking stuff. Violate this, and you’ll create runtime landmines.

Bad example

UML

class Bird:     def fly(self):         return "The bird is flying"      def walk(self):         return "The bird is walking"   class Duck(Bird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(Bird):     def fly(self):         raise AttributeError("Penguins cannot fly:(")      def walk(self):         return "The penguin is walking" 

Penguins do exist, but they break LSP here. Anywhere you expect a Bird, the substitution fails and the design no longer guarantees consistent behavior.

Good example

Split behaviors:

UML

class FlyingBird:     def fly(self):         return "The bird is flying"   class WalkingBird:     def walk(self):         return "The bird is walking"   class Duck(FlyingBird, WalkingBird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(WalkingBird):     def walk(self):         return "The penguin is walking" 

Now penguins waddle safely. Ducks still fly. Everyone’s happy. No runtime betrayals.

\

Good Example of a greeter from the OCP topic

Define a base Greeter and extend it with new variants:

UML

class Greeter:     def __init__(self, name: str):         self.name = name      def greet(self):         raise NotImplementedError   class HiGreeter(Greeter):     def greet(self):         print("Hi, " + self.name)   class HeyGreeter(Greeter):     def greet(self):         print("Hey, " + self.name)   class HelloGreeter(Greeter):     def greet(self):         print("Hello, " + self.name) 

This design is cleaner: the interface stays stable (greet()), new greetings are real extensions, and polymorphism works. Clients don’t care how the greeting is produced - they just call greet(). And the real benefit: we can swap one Greeter for another and remain confident the code behaves as expected, without digging into implementation details - because we followed OCP and LSP. That’s the spirit of predictable, maintainable design.

For the nerds, the formal definition of this principle is:

en.wikipedia.org/wiki/Liskov_substitution_principle

\


🔌 Interface Segregation Principle (ISP)

Don’t force a class to implement methods it doesn’t need. Otherwise you’re just padding the code with dead weight.

Why it matters

Clients shouldn’t be forced to implement methods they don’t need. If your interface has eat() and sleep(), but a robot only needs charge(), you’re designing like it’s 1999. Formally: many small, focused interfaces are always better than one bloated interface that forces irrelevant obligations.

Bad example

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass      @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class Programmer(IEmployee):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee):     def work(self):         print("Android moves boxes")      def eat(self):         raise NotImplementedError("Android doesn't eat, it's a machine")      def sleep(self):         raise NotImplementedError("Android doesn't sleep, it's a machine") 

Good example

Split interfaces:

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass   class IHuman(ABC):     @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class IMachine:     @abstractmethod     def charge(self):         pass   class Programmer(IEmployee, IHuman):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee, IMachine):     def work(self):         print("Android moves boxes")      def charge(self):         print("Android charges, wait for 3 hours") 

Now humans eat, robots charge. No unnecessary code. Interfaces are lean, not bloated.

\

\


🏗 Dependency Inversion Principle (DIP)

Depend on abstractions, not concrete implementations. Otherwise, your code is welded to a single library or vendor like shackles you’ll never escape from.

Why it matters

If your service directly imports boto3, good luck swapping S3 for HDFS, GCS, or even MinIO. From a formal perspective, this creates a tight coupling to a specific implementation rather than an abstraction, which severely limits extensibility and portability. Vendor lock-in = pain, and even a simple architectural decision - like supporting both on-prem HDFS and cloud object storage - suddenly requires massive rewrites.

Bad example

UML

import boto3   class DistributedFileSystem:     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path) 

Direct AWS dependency. Migrating to another cloud = rewrite.

Good example

Abstract it:

UML

from abc import ABC, abstractmethod  import boto3   class DistributedFileSystem(ABC):     @abstractmethod     def read_file(path: str) -> bytes:         pass      @abstractmethod     def write_file(path: str, file: bytes):         pass   class BotoS3Client(DistributedFileSystem):     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path)   class HDFSClient(DistributedFileSystem): ... 

Now you can switch storage backends without rewriting business logic. Future-proof and vendor-agnostic.

\


Final Thoughts: SOLID ≠ Religion, But It Saves Your Sanity

In 2025, frameworks evolve, clouds change, AI tools promise to “replace us”, but the pain of bad code is eternal.

SOLID isn’t dogma - it’s the difference between code that scales with your project and code nobody wants to work with.

Use SOLID not because Uncle Bob said so, but because your future self (and your team) will actually enjoy working with you.

\


👉 What do you think - are SOLID principles still relevant today, or do you prefer chaos-driven development?

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Crucial Delay: How Lack of Data Could Impact Fed Policy Adjustments

Crucial Delay: How Lack of Data Could Impact Fed Policy Adjustments

BitcoinWorld Crucial Delay: How Lack of Data Could Impact Fed Policy Adjustments The financial world is abuzz following Federal Reserve Chair Jerome Powell’s recent remarks, which highlight a significant challenge facing the central bank’s future Fed policy adjustments. A lack of reliable economic data, particularly employment indicators, stemming from the government shutdown, could force the Fed to pump the brakes on its planned policy shifts. This situation introduces a layer of uncertainty for markets and investors alike, as the central bank relies heavily on comprehensive data to guide its decisions. What’s Driving the Uncertainty in Fed Policy Adjustments? Jerome Powell explicitly stated that the recent government shutdown created a void in critical economic reporting. Key employment indicators, consumer sentiment surveys, and other vital statistics that typically inform the Federal Reserve’s understanding of the economy simply weren’t available. Without this complete picture, making informed decisions about interest rates or other monetary tools becomes incredibly difficult. The Federal Reserve operates on a data-dependent framework. This means every decision regarding Fed policy adjustments, such as whether to raise, lower, or maintain interest rates, is meticulously weighed against the latest economic performance data. When this data stream is interrupted, the foundation for policy decisions weakens, leading to potential delays. Why Are Comprehensive Economic Data Crucial for Monetary Policy? Think of the economy as a complex machine, and economic data as the dashboard gauges. The Fed needs to see these gauges clearly – unemployment rates, inflation figures, GDP growth, and wage increases – to know if the machine is running too hot or too cold. Without accurate readings, it’s like driving blindfolded. For instance, employment data offers insights into labor market health, consumer spending power, and potential inflationary pressures. If the Fed can’t accurately assess these factors, it risks making an adjustment that could either stifle growth unnecessarily or allow inflation to accelerate unchecked. This underscores the profound importance of timely and accurate information for effective monetary policy adjustments. Potential Challenges and Implications for Future Fed Policy Adjustments This data gap presents several challenges: Market Volatility: Uncertainty about the Fed’s next move can lead to increased volatility in financial markets, impacting everything from stock prices to bond yields. Investor Confidence: A less predictable monetary policy environment can erode investor confidence, potentially affecting investment and growth. Delayed Decisions: The most direct impact is the potential for the Fed to slow the pace of its Fed policy adjustments. This could mean interest rate decisions are postponed or approached with greater caution. Economic Forecasting: Other economic forecasters and businesses also rely on this data, making their own planning more difficult. Powell himself acknowledged this, expressing a strong desire to have more comprehensive data available by December. This timeline suggests that the central bank is actively waiting for clarity before committing to its next steps. Looking Ahead: What Does This Mean for Future Fed Policy Adjustments? The immediate takeaway is patience. The Federal Reserve will likely adopt a more cautious stance, preferring to wait for a clearer economic picture before making any significant moves. This doesn’t necessarily mean a halt to all Fed policy adjustments, but rather a more deliberate and potentially slower approach. For individuals and businesses, this period calls for close attention to upcoming economic reports and statements from the Federal Reserve. Understanding the data the Fed is watching will be key to anticipating their next actions. The central bank’s commitment to data-driven decisions remains paramount, even when the data itself is temporarily elusive. In conclusion, Jerome Powell’s candid admission underscores the critical role of robust economic data in shaping monetary policy. The temporary void created by the government shutdown could indeed slow the pace of Fed policy adjustments, introducing a period of heightened caution and data dependency for the central bank. As we move forward, the availability of comprehensive economic indicators will be the guiding light for the Federal Reserve’s crucial decisions, influencing the stability and growth of the broader economy. Frequently Asked Questions (FAQs) Q1: Why is a lack of data so problematic for the Federal Reserve? The Federal Reserve relies on accurate and timely economic data to assess the health of the economy and make informed decisions about interest rates and other monetary tools. Without this data, their ability to make effective Fed policy adjustments is severely hampered, increasing the risk of missteps. Q2: What specific types of data are most important for the Fed? Key data points include employment indicators (like unemployment rates and job growth), inflation figures (Consumer Price Index), GDP growth, retail sales, and manufacturing output. These provide a comprehensive view of economic activity and inflationary pressures, guiding monetary policy adjustments. Q3: How might this delay in policy adjustments affect the average person? A delay in Fed policy adjustments could lead to increased market volatility, impacting investments and retirement savings. It might also prolong uncertainty about future interest rates, which can affect borrowing costs for mortgages, car loans, and credit cards. Q4: When does Jerome Powell expect to have sufficient data? Jerome Powell expressed hope that more comprehensive data would be available by December. This suggests that the central bank is anticipating a clearer economic picture towards the end of the year before making further Fed policy adjustments. Q5: Does this mean the Fed won’t make any policy changes until December? Not necessarily. It means the Fed will likely adopt a more cautious and deliberate approach to any Fed policy adjustments. While significant shifts might be postponed, the central bank will continue to monitor available information and could make minor adjustments if deemed necessary, albeit with greater prudence. Did you find this analysis helpful in understanding the complexities of monetary policy? Share this article with your network on social media to keep others informed about the critical factors influencing the Federal Reserve’s decisions! To learn more about the latest explore our article on key developments shaping global economic trends and their impact on future market stability. This post Crucial Delay: How Lack of Data Could Impact Fed Policy Adjustments first appeared on BitcoinWorld.
Share
Coinstats2025/10/30 03:40