This conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic techniqueThis conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic technique

Holography Light: Justification and Future Theory

2025/11/04 09:43
  • Prologue
  • Diagrammatic(s) Rules
  • Straight-forward Eikonal
  • Legacy Bosonization
  • Wonton Holography
  • Holographic Propagators
  • Strange Cuprates
  • Stranger Things
  • Epilogue

Epilogue

\ Importantly, even a perfect match between the holographic and some other (believed to be comparatively better established) results would not provide a firm justification for the holographic technique itself. Indeed, any results obtained under the assumption of a purely classical (non-dynamical) background metric - which assumption is overwhelmingly common to the practical applications of the holographic approach - would only pertain to its ’light’ version, as opposed to the full-fledged one. As to the possible desk-top simulations of such a ’holography light’ scenario, those have been proposed for several platforms, including flexible graphene flakes [55] and hyperbolic metamaterials [56].

\ Projecting into the future, it seems quite likely that the ultimate theory of correlated quantum matter will eventually assume a form akin to quantum hydrodynamics formulated in terms of the moments of quantum distribution function [57]. Such a collective-field description of the bulk (a.k.a. ’phase’) space with the d-dimensional momentum providing for the extra dimensions could be equally well called either bosonization, or holography. Regardless of the name, though, taking a full advantage of this formally exact approach might turn out to be difficult, especially in the physically relevant cases of N ∼ 1 and moderate coupling strengths.

\ Nevertheless, there still seems to be no good reason neither for this theory to conform to anything as specific and convenient as the EMD Lagrangian (22), nor for the corresponding holographic dictionary to be copy-pasted ’ad verbatim’ from string/HEP theory.

\ One would hope that exposing the existing controversy over this and related issues might be helpful to authors of the future original (of course) studies on the topic - as well as their knowledgeable and unbiased (of course) referees.

\ This note was compiled, in part, while staying at and being supported by the Aspen Center for Physics under the NSF Grant PHY-1607611.

\


\

  1. T. Holstein, R. E. Norton and P. Pincus, Phys. Rev. B 8, 2649 (1973); M. Y. Reizer, Phys.Rev.B39, 1609 (1989); ibid, B40, 11571 (1989).

    \

  2. C.J.Pethick, G.Baym, and H.Monien, Nucl.Phys.A498, 313c (1989).

    \

  3. P. A. Lee, Phys. Rev. Lett. 63, 680 (1989); L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989); P.A. Lee and N. Nagaosa, ; Phys. Rev. Lett. 64, 2450 (1990); Phys. Rev. B46, 5621 (1992); J.Gan and E. Wong, Phys. Rev. Lett. 71, 4226 (1993); C. Nayak and F. Wilczek, Nucl. Phys. B 430, 534 (1994); S.Chakravarty et al., Phys. Rev. Lett. 75, 3584 (1995).

    \

  4. C. Castellani and C. Di Castro, Physica C 235-240, 99 (1994); C. Castellani et al., Phys. Rev. Lett. 72, 316 (1994); W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006); Phys. Rev. Lett. 98, 136402 (2007).

    \

  5. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993)

    \

  6. A. Chubukov, C. Pepin and J. Rech, Phys. Rev. Lett. 92, 147003 (2004); Phys. Rev. B 74, 195126 (2006); A. V. Chubukov, Phys. Rev. B71, 245123 (2005);

    \

  7. A. V. Chubukov, D. V. Khveshchenko, Phys. Rev. Lett. v.97 p.226403 (2006), cond-mat/0604376.

    \

  8. T. A. Sedrakyan and A. V. Chubukov, Phys. Rev. B 79, 115129 (2009), arXiv:0901.1459.

    \

  9. S.-S. Lee, Phys. Rev. B 78, 085129 (2008), Phys. Rev. D 79, 086006 (2009); 2009. Phys. Rev. B 80:165102; Metlitski M, Sachdev S. 2010. Phys. Rev. B 82:075127; 2010. Phys. Rev. B 82:075128.

    \

  10. D. F. Mross et al, Phys. Rev. B 82 (2010) 045121; arXiv:1003.0894; Raghu S, Torroba G, Wang H. 2015. Phys. Rev. B 92:205104 Fitzpatrick A.L. et al, 2015. Phys. Rev. B92:045118 A. Eberlein, I. Mandal, S. Sachdev, Phys. Rev. B 94, 045133 (2016), arXiv:1605.00657.

    \

  11. B.L. Altshuler and L.B. Ioffe, Phys. Rev. Lett. 69, 2979 (1992); E.Altshuler et al, arXiv:cond-mat/9404071; A. Mirlin, E. Altshuler, P. Woelfle, Ann. Physik 5 (1996) 281; I.V. Gornyi, A. Mirlin, Phys. Rev. E 65 (2002) 025202; D. Taras-Semchuk, K. B. Efetov, Phys. Rev. B 64, 115301 (2001).

    \

  12. D. V. Khveshchenko and S. V. Meshkov, Phys. Rev. B 47, 12051 (1993); D. V. Khveshchenko, Phys. Rev. Lett. 77, 1817 (1996).

    \

  13. P.C.E.Stamp, Phys.Rev.Lett.68, 2180 (1992); J.Phys.(France) 3, 625 (1993).

    \

  14. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71, 2118 (1993); Phys. Rev. B 49, 5227 (1994);

    \

  15. M. J. Lawler et al, Phys. Rev. B 73, 085101 (2006); cond-mat/0508747; M. J. Lawler, E. Fradkin, Phys. Rev. B 75, 033304 (2007); cond-mat/0605203.

    \

  16. P.S¨aterskog, B. Meszena, and K. Schalm, Phys. Rev. B 96, 155125 (2017), arXiv:1612.05326; P.S¨aterskog, SciPost Phys. 4, 015 (2018), arXiv:1711.04338.

    \

  17. Tomer Ravid, Tom Banks, arxiv.org/abs/2208.01183.

    \

  18. L. B. Ioffe, D. Lidsky, and B. L. Altshuler, Phys. Rev. Lett. 73, 472 (1994); B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994); ibid B52, 5563 (1995); ibid B53, 415 (1996); B.L.Altshuler et al, ibid B52, 4607 (1995).

    \

  19. A. Luther, Phys. Rev. B 19, 320 (1979). F. D. M. Haldane, Helv. Phys. Acta. 65, 152 (1992); A. Houghton and J. B. Marston, Phys. Rev. B 48, 7790 (1993); A. Houghton et al., ibid. 50, 1351 (1994); J. Phys. 6, 4909 (1994); H.-J. Kwon et al., Phys. Rev. Lett. 73, 284 (1994); Phys. Rev. B 52, 8002 (1995); A. H. Castro Neto and E. Fradkin, Phys. Rev. Lett. 72, 1393 (1994); Phys. Rev. B 49, 10877 (1994); ibid. 51,4048 (1995); P. Kopietz et al., Phys. Rev. B 52, 10877 (1995); A. Houghton, H. J. Kwon, and J. B. Marston, Adv. Phys. 49, 141 (2000). J. Nilsson and A. H. Castro Neto, Phys. Rev. B 72, 195104 (2005).

    \

  20. D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev. B 48, 10766 (1993).

    \

  21. D. V. Khveshchenko, Phys. Rev. B 49, 16893 (1994); ibid B 52, 4833 (1995).L.V. Delacretaz et al, Phys. Rev. Research 4, 033131 (2022), arXiv:2203.05004.

    \

  22. W. Metzner,C.Castellani, C, Di Castro, Advances in Physics, 47, 317 (1998).P. Kopietz and G. E. Castilla, Phys. Rev. Lett. 76, 4777 (1996); ibid 78, 314 (1997).K. B. Efetov, C. Pepin, H. Meier, Phys. Rev. Lett. 103,186403 (2009); Phys. Rev. B 82, 235120 (2010).

    \

  23. S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); C. P. Herzog, J.Phys. A42 343001 (2009); J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010); J. Polchinski, arXiv:1010.6134; J. McGreevy, Adv.High Energy Phys. 2010, 723105 (2010); S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); S.Sachdev, Annual Review of Cond. Matt. Phys.3,9 (2012); J. Zaanen et al, ’Holographic Duality in Condensed Matter Physics’, Cambridge University Press, 2015; M. Ammon and J. Erdmenger, ’Gauge/Gravity Duality’, Cambridge University Press, 2015; S.A. Hartnoll, A.Lucas, and S. Sachdev, ’Holographic Quantum Matter’, MIT Press, 2018; J. Zaanen,arXiv:2110.00961.S. Kachru, X. Liu and M. Mulligan, Phys. Rev. D 78, 106005 (2008); S. A. Hartnoll and A. Tavanfar, Phys. Rev. D 83, 046003 (2011); S. A. Hartnoll, D. M. Hofman, and D. Vegh, arXiv:1105.3197; S. A. Hartnoll et al, JHEP 1004, 120 (2010); V. G. M. Puletti et al, JHEP 1101, 117 (2011); M. Edalati, R. G. Leigh and P. W. Phillips, Phys. Rev. Lett. 106, 091602 (2011); M. Edalati et al, Phys. Rev. D 83, 046012 (2011).

    \

  24. S. S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy and D. Vegh, arXiv:0903.2477; M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009), arXiv:0904.1993; arXiv:1012.5681; T. Faulkner et al,arXiv:0907.2694,1003.1728,1101.0597,1306.6396; N. Iizuka et al, arXiv:1105.1162; D. Guarrera and J. McGreevy, arXiv:1102.3908; K. Jensen et al, arXiv:1105.1772; L. Huijse, S. Sachdev, arXiv:1104.5022; L.Huijse, S.Sachdev, B.Swingle,arXiv:1112.0573; F.Herˇcek, V. Gecin, M. Cubrovi´c, 2208.05920. ˇ 29 C.Charmousis et al, JHEP 1011, 151 (2010); E

    \

  25. C.Charmousis et al, JHEP 1011, 151 (2010); E. Perlmutter, JHEP 06 28 2012Xi Dong et al, JHEP 1206 041, 2012, arXiv:1201.1905; B.S.Kim, JHEP 1206 (2012) 116, arXiv:1202.6062.

    \

  26. D. V. Khveshchenko, Phys. Rev. B 86, 115115 (2012), arXiv:1205.4420.

    \

  27. S. Sachdev and J. Ye, Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030; S. Sachdev, Phys.Rev.Lett.105, 151602 (2010); Phys. Rev. D 84, 066009 (2011); Phys.Rev.X5, 041025 (2015); A. Kitaev, KITP seminars, 2015; arXiv:1711.08169; A. Kitaev and S. J. Suh, JHEP05(2018)183, arXiv:1711.08467;1808.07032; S.Sachdev, arXiv:2205.02285.

    \

  28. D. V. Khveshchenko, SciPost Phys. 5 012 (2018),arXiv:1705.03956; Condens. Matter 2018, 3(4), 40,arXiv:1805.00870; ibid 2020, 5, 37, arXiv:2004.06646.

    \

  29. Erez Berg et al, Annual Review of Condensed Matter Physics 2019 10,63,arXiv:1804.01988; Y. Schattner et al, Phys. Rev. X 6, 031028 (2016); S. Lederer et al, PNAS 114(19), 4905 (2017); X.Y.Xu et al, Phys. Rev. X 7, 031058 (2017); X.Y.Xu et al, npj Quantum Mater. 5, 65 (2020),arXiv:2003.11573; A.Klein et al, Phys. Rev. X 10, 031053 (2020),arXiv:2003.09431.

    \

  30. D.V.Khveshchenko, Lith.J.Phys.,55,208(2015), arXiv:1404.7000; ibid 56,125(2016),arXiv:1603.09741.

    \

  31. M.Mitrano et al, PNAS (2018), 21, 495; Romero-Bermudez J. et al, Phys. Rev. B 99, 235149 (2019); A.A.Husain et al, Phys. Rev. X 9, 041062 (2019); P. W. Phillips, N. E. Hussey, P. Abbamonte, Science, 377, 1-10 (2022); B. Michon et al, arXiv:2205.04030; E. van Heumen et al, Phys Rev B106, 054515 (2022); F. Balm et al, 2211.05492.

    \

  32. D. V. Khveshchenko, Lith.J.Phys.,59,104(2019), arXiv:1905.04381; ibid 60,185(2020),arXiv:1912.05691; ibid 62 2(2022),arXiv:2205.11478.

    \

  33. S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010),arXiv:0911.2898.

    \

  34. D. V. Khveshchenko, EPL 111 (2015) 1700, arXiv:1502.03375; Lith. J. of Phys. 61, 1 (2021), arXiv:2011.11617.

    \

  35. S.A. Hartnoll and A.Karch, Phys. Rev. B 91, 155126 (2015); A. Karch, K. Limtragool, P. W. Phillips, JHEP 2016, 175 (2016), arXiv:1511.02868; A. Amoretti and D. Musso, JHEP 1509 (2015) 094; A. Amoretti et al, Adv. in Phys. X, v.2, 409 (2017); Phys. Rev. Res 2, 023387 (2020).

    \

  36. A.A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019); Phys. Rev. B 98 125134 (2018); D. Miserev, J. Klinovaja, and D. Loss, Phys. Rev. B 103 075104 (2021); D. Chowdhury et al,arXiv:2109.05037; I. Esterlis et al,Phys. Rev. B 103, 235129; D. Chowdhury and E. Berg, Phys. Rev. Research 2 013301 (2020); P. Cha et al, Phys. Rev. Research 2 033434 (2020); H. Guo, Y. Gu, and S. Sachdev, Phys. Rev. B 100, 045140; A.A.Patel et al, arXiv:2203.04990; I. Esterlis et al, Phys. Rev. B 103, 235129 (2021), arXiv:2103.08615; D, Chowdhury et al, Reviews of Modern Physics 94, 035004 (2022), [arXiv:2109.05037]; A.A. Patel et al, arXiv:2203.04990; Wang, X., Chowdhury, D., arXiv:2209.05491; H. Guo et al, Phys. Rev. B 106, 115151 (2022).

    \

  37. G. T. Horowitz, J. E. Santos, and D. Tong, JHEP, 07 (2012) 168, arXiv:1204.0519; ibid 011 (2012) 102, arXiv:1209.1098.

    \

  38. A. Donos and J. P. Gauntlett, JHEP 04 (2014); 040; M. Rangamani, M. Rozali, and D. Smyth, ibid 07 (2015) 024; B. W. Langley, G. Vanacore, and P. W. Phillips, arXiv:1506.06769.

    \

  39. G. A. Inkof, K. Schalm, J. Schmalian, NPJ Quantum Materials volume 7, 56 (2022), arXiv:2108.11392; J.Schmalian, arXiv:2209.00474;

    \

  40. B. Meszena et al, Phys. Rev. B 94, 115134, arXiv:1602.05360; P.S¨aterskog, SciPost Phys. 10, 067 (2021), arXiv:2010.03077.

    \

  41. P. Nozieres, J. Phys. (Paris) 2, 443 (1992).

    \

  42. J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis, Phys. Rev. B 45, 13047 (1992); Ar. Abanov, A. V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003), arXiv: cond-mat/0107421.

    \

  43. T.D.Son, Phys. Rev. X 5, 031027 (2015), arXiv:1502.03446; Prog. Theor. Exp. Phys. 2016, 12C103, arXiv:1608.05111; Annu. Rev. Condens. Matter Phys. 9, 397 (2018), arXiv:1805.04472.

    \

  44. D. V. Khveshchenko, Phys. Rev. B 75, 153405 (2007), arXiv:cond-mat/0607174.

    \

  45. H.Schulz, Phys.Rev.Lett.71, 1864 (1993).

    \

  46. W. Rantner and X-G. Wen, Phys. Rev. Lett. 86, 3871 (2001); J. Ye, Phys. Rev. Lett.87, 227003 (2001); M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003 (2001).

    \

  47. D. V. Khveshchenko, Phys. Rev. Lett. 90, 199701 (2003), arXiv:cond-mat/0306079; ibid 91, 269701 (2003), arXiv:cond-mat/0306080; Phys. Rev. B 65, 235111 (2002), arXiv:cond-mat/0112202; Nucl. Phys. B642, 515 (2002, arXiv:cond-mat/0204040; arXiv:cond-mat/0205106; V. P. Gusynin, D.V. Khveshchenko, and M. Reenders, Phys. Rev. B 67, 115201 (2003), arXiv:cond-mat/0207372.

    \

  48. 5 E. Bagan, M. Lavelle and D. McMullan, Annals of Phys. 282, 471, 503 (2000).

    \

  49. D. V. Khveshchenko and A. G. Yashenkin, Phys. Lett. A, v.309, p.363 (2003), arXiv:cond-mat/0202173; Phys. Rev. B 67, 052502 (2003), arXiv:cond-mat/0204215;

    \

  50. D. V. Khveshchenko, Phys. Rev. B 75, 241406(R) (2007), arXiv:cond-mat/0611485; EPL, p.57008, v.82 (2008), arXiv:0705.4105.

    \

  51. D. V. Khveshchenko, EPL, 104, 47002 (2013), arXiv:1305.6651.

    \

  52. D. V. Khveshchenko, EPL, 109, 61001 (2015), arXiv:1411.1693.

    \

  53. D. V. Khveshchenko, Lith. J. of Phys., 61, 233, 2021, arXiv:2102.01617.

\

:::info Author:

(1) D. V. Khveshchenko, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

The post Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment? appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 17:39 Is dogecoin really fading? As traders hunt the best crypto to buy now and weigh 2025 picks, Dogecoin (DOGE) still owns the meme coin spotlight, yet upside looks capped, today’s Dogecoin price prediction says as much. Attention is shifting to projects that blend culture with real on-chain tools. Buyers searching “best crypto to buy now” want shipped products, audits, and transparent tokenomics. That frames the true matchup: dogecoin vs. Pepeto. Enter Pepeto (PEPETO), an Ethereum-based memecoin with working rails: PepetoSwap, a zero-fee DEX, plus Pepeto Bridge for smooth cross-chain moves. By fusing story with tools people can use now, and speaking directly to crypto presale 2025 demand, Pepeto puts utility, clarity, and distribution in front. In a market where legacy meme coin leaders risk drifting on sentiment, Pepeto’s execution gives it a real seat in the “best crypto to buy now” debate. First, a quick look at why dogecoin may be losing altitude. Dogecoin Price Prediction: Is Doge Really Fading? Remember when dogecoin made crypto feel simple? In 2013, DOGE turned a meme into money and a loose forum into a movement. A decade on, the nonstop momentum has cooled; the backdrop is different, and the market is far more selective. With DOGE circling ~$0.268, the tape reads bearish-to-neutral for the next few weeks: hold the $0.26 shelf on daily closes and expect choppy range-trading toward $0.29–$0.30 where rallies keep stalling; lose $0.26 decisively and momentum often bleeds into $0.245 with risk of a deeper probe toward $0.22–$0.21; reclaim $0.30 on a clean daily close and the downside bias is likely neutralized, opening room for a squeeze into the low-$0.30s. Source: CoinMarketcap / TradingView Beyond the dogecoin price prediction, DOGE still centers on payments and lacks native smart contracts; ZK-proof verification is proposed,…
Share
BitcoinEthereumNews2025/09/18 00:14
LivLive ($LIVE) Dominates 2025 Top Crypto Presales as BlockDAG and Ozak AI Catch Fire

LivLive ($LIVE) Dominates 2025 Top Crypto Presales as BlockDAG and Ozak AI Catch Fire

The post LivLive ($LIVE) Dominates 2025 Top Crypto Presales as BlockDAG and Ozak AI Catch Fire appeared on BitcoinEthereumNews.com. Crypto Presales LivLive leads 2025’s top crypto presales with massive growth potential, while BlockDAG and Ozak AI gain investor momentum. Use code EARLY30 for 30% bonus tokens. Ever feel like your time, attention, and daily movement create value for others, but never for you? LivLive ($LIVE) fixes that by paying users for simply living life. It transforms everyday motion, event check-ins, and social participation into crypto rewards. In a year flooded with speculative presales, LivLive brings substance to blockchain utility, setting itself apart from tech-heavy rivals like BlockDAG ($BDAG) and Ozak AI ($OZAK). Instead of relying on online hype, LivLive channels energy from the real world. Each action, walking, exploring, or attending an event, converts into verifiable on-chain rewards. This unique design has already helped the project raise over $2 million in its early stage, drawing lifestyle enthusiasts and investors alike. With 30% bonus tokens available via the code EARLY30, LivLive is turning human activity into a true digital asset. LivLive ($LIVE) Real-World Utility: Turning Human Action Into Crypto Rewards The LivLive presale opened at $0.020 per $LIVE, offering access to NFT Packs, staking perks, and a share of the $2.5 million Treasure Vault Giveaway. Over 10 stages, the price will climb to $0.20 before the official $0.25 launch listing, giving early participants enormous upside. Buyers who enter early and apply EARLY30 receive an instant 30 % extra token bonus, multiplying returns as each stage sells out. LivLive’s AR wristband verifies real-world actions through geolocation. Completing quests or attending partnered events unlocks $LIVE rewards, redeemable for luxury experiences, tech gadgets, and travel prizes. This “move-to-earn” model connects physical life with blockchain profit. Each new user adds transaction volume and liquidity, reinforcing token demand. LivLive makes lifestyle participation financially meaningful, a feature missing from nearly every other presale today. The $2.5…
Share
BitcoinEthereumNews2025/11/05 03:35