I recently started doing software development work to expand and integrate AI systems. Here are some of the biggest surprises I found along the way.I recently started doing software development work to expand and integrate AI systems. Here are some of the biggest surprises I found along the way.

My 5 Biggest Surprises as an AI Developer

I recently started doing software development work to expand and integrate AI systems.

Here are some of the biggest surprises I found along the way.

\

AI Developers Love Calling Everything “Fine Tuning”

\ When studying for the AI-102 exam, I thought fine tuning strictly referred to additional training of a model to include additional data (which can be fed into the system in different ways).

When actually working on an AI project, what I learned was developers (and architects) sprinkle this phrase on just about everything.

Do you need to get some more exposure to how LangGraph works ? Well that learning process is “fine tuning”.

Does the AI model need outside data and to assemble that into the response at run time ? You thought that was a RAG ? OK bro, I guess, but we’re going to call that fine tuning as well.

Is there a bug in the code anywhere ? We used to call that a feature, but it looks like we just need to do some “fine tuning”.

\

Successful People Use AI A Lot

I’m aware of the MIT study showing that most AI projects fail.

What people are less familiar with is all the data showing free lancers who use AI make a ton more money than those who don’t.

If you’re not using AI (especially on an individual level) to get work done quickly, you are going to be at a disadvantage.

A lot of companies (including one of my current clients) understand this and are trying to adopt this capability.

And this includes companies that aren’t traditionally seen as technology companies.

I was recently surprised by a colleague who allowed one of his AI certifications to expire. He said he wasn’t getting any bites from the market. This might be because he was trying a year ago and things have heated up since then. Or factors beyond our control. In any case, I landed a spot on an AI project within a week of passing the AI-102.

\

Successful People Are Discrete About Using AI

Just like students hide how much they are leaning on ChatGPT to answer their homework problems (in spite of the learning potential and capability it brings), successful AI projects hide how much they lean on AI systems to understand what is going on.

There may soon come a day when AI does not have the stigma that it currently has, but until that day happens, clients (and teachers) want any assurance you can give them that you have internalized (i.e. learned) what you are sharing with them.

Even if it is totally infeasible to think that a developer should understand minutia about network details.

Funny story, I talked to a high level AI worker in another company on the same project who wanted to collab with me about how to reformat CoPilot data so it doesn’t look so much like it came from CoPilot.

Thankfully, you don’t need anything quite so elaborate as that. You can always be discrete about where you got the data. In some companies it is SOP to tell the client “it doesn’t matter” where the data comes from.

Or alternatively, you can just tell the client you would need to investigate it. If it’s something exotic, then chances are your competitor does not have the answer off the top of their head and this approach is slightly more transparent and authentic.

\

AI Written Code is Too Verbose and Depends on Learning From Humans

AI written code quality can vary considerably (especially on the basis of what the AI was trained on). I’ve found that GitHub CoPilot can quickly add the features I need before having to do a deep examination of what the operating pieces of code are.

You can look at that as taking encapsulation to a new level or as criminal negligence, but we are likely heading toward a software market where you are set back for over analyzing the code components. An AI veteran on my project helped me integrate GHCP with my IDE and encouraged others on the project to meet our deadlines by using AI.

Anticipate having to make adjustments to the output.

Depending on your framework (python in this case), you might need to pare down the outcomes of three or four levels of truthiness and simplify the data handling to a few cases that are relevant to your project.

\ The Disruption Means a Lot of New Things to Try

While you should be careful about re-inventing the wheel even in something as new and disruptive as AI technologies (for example, your skills in training and building LLMs are extremely narrow, niche) … a lot of the basics in new AI tools are still being ironed out.

That means there is tremendous opportunity for creating new capabilities and mastering skills that no one else has yet.

For example, what is the best way to have an AI select (orchestrate) between tools ? Should you use a single agent ? An established framework like Semantic Kernel, Agent Foundry, LangGraph, or CoPilot Studio ?

There’s no obvious solution. Exploration is needed.

Another example is RAGs (or Retrieval Augmented Generation). As mentioned earlier, these paradigms extend what a model is capable of providing content on … and there is no platform that is as simple as clicking a button to provide that (although some claim they have this capability).

\ Software development using AI is a lot like the Wild West right now. You’ll find one new thing happening over here and a completely different new thing happening over there. My suggestion is to try things out, learn from other people’s mistakes, and discover what interests you.

\ \

Market Opportunity
MY Logo
MY Price(MY)
$0.0749
$0.0749$0.0749
-2.21%
USD
MY (MY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Understanding Employee Wage Payments and How They Work

Understanding Employee Wage Payments and How They Work

Paying employees accurately and on time is one of the most important responsibilities of any business. Whether a company is small or large, the method used to deliver
Share
Techbullion2026/01/29 07:27
CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56
BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44